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Review

 Quick sort is a widely used sorting algorithm developed by C.
A.R. Hoare

— Quick sort is also known as partition exchange sort
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QUICKSORT (4, p, ) PARTITION(A, p, 1)

1 ifp<r I = Alr]

2 g = PARTITION(A, p,r) 2 i=p-l

3 QUICKSORT(4, p,q — 1) Z for ’-fj[’-’]tir -

4 QUICKSORT(A,q + 1,r) 5 l ,'Jz_ix+1
6 exchange A[i] with A[]]
7 exchange A[i + 1] with A[r]
8 returni + 1

« The running time of the partition function
— Worst-case partition: T(n) = 0(n?)
— Best-case partition: T(n) = @(nlog, n)
— RANDOMIZED-PARTITION is O(n log, n)



Counting Sort.

« Counting sort assumes that each of the n input elements is
an integer in the range 0 to k

— It first determines the number of elements less than a given
element x

— The information is used to place element x directly into its
position in the output array

« In the code for counting sort
— The input is an array A[1 ...n]
e A.length =n
— The array B[1 ...n] holds the sorted output
— The array C[O0 ... k] provides temporary working storage



Example.

 Please sort a given array by using counting sort

1 2 3 4 5 6 7 38
A25302303+

— Stepl: Counting the frequencies
O 1 2 3 4 5

cl2]0]2]3]0]1]

— Step2: Determining the number of elements less than x
0 1 2 3 4

5
cl2|2|4]7|7|8]|

— Step3: Putting each element at its own correct position

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

al2]5]3]o[2]3]0[@®] B 3
0 1 2 3 4 5 0 1 2 3 4 5
C224778|+ cl2|2|4|6]7]8




Example..

— Step3: Putting each element at its own correct position
1 2 3 4 5 6 7 8 4 5 6 7 8

1 2 3
al2]s]3]o]2]3[@]3] » [ o [ 5 [T




Example...

— Step3: Putting each element at its own correct position

1 2 3 4 5 6 7 8 I 2 3 4 5 6
JNBEEN
1 2 3 4




Example....

— Step3: Putting each element at its own correct position
1 2 3 4 5 6 7 8
Al2(5]3|10(2|3(0]3 '
0O 1 2 3 4 5
Clo|23[4]7]|8

1 2 3 4 5 6 7 8




Counting Sort..

COUNTING-SORT(A, B, k)
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let C[0..k] be anew array
fori = 0tok

Cl

i1=0

for j = 1to A.length Counting the frequencies

Cl

/ Cli]

Aljl] = ClA[j]] + 1
now contains the number of elements equal to 7.

fori = 1tok Determining the number

Cl

// Cli]

for j = A.length downto 1

j] — C[i] + C[i — 1] of elements less than x
now contains the number of elements less than or equal to 7.

Putting each element at

B[C[A[j]]] = Al]] its own correct position
ClA[j]] = C[A[j]] -1




Analyses

« The overall time for counting sort is @(n + k)

— In practice, we usually use counting sort when we have k =
O(n), in which case the running time is O(n )

COUNTING-SORT(A, B, k)

1 let C[O..k] be anew array

2 fori =_'0t0k (k)

3 Cli] =0

4 for j - 1 .tO A.Zength. Counting the frequencies, ©(n)

5 ClA[j]l = ClA[j]1 +1

6 // C[i] now contains the number of elements equal to 7.

7 fori = 1tok Determining the number of

8 Cli] = C[i]+ C[i — 1] elements less than x, ©(k)

9 // C[i] now contains the number of elements less than or equal to 7.
10 for j = A.length downto 1

_ _ Putting each element at its
B[C[A[j]]] = A[j] own correct position, O(n)
12 ClA[j]] = C[A[j]] -1
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Radix Sort.

e Radix sort is a linear sorting algorithm for integers and uses

the concept of sorting names in alphabetical order

— Radix sort is also known as bucket sort?

329 720 720 329
457 355 329 355
657 436 436 436
839 i 457 e - 839 s 457
436 657 355 657
720 329 457 720
355 839 657 839




Example.

o Sort the given numbers using radix sort

345, 654, 924, 123, 567, 472, 555, 808, 911.

— The first step: The numbers are sorted according to the digit at
ones place

« The new order is 911, 472, 123, 654, 924, 345, 555, 567, 808
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Example..

— Based on the new order: 911, 472, 123, 654, 924, 345, 555, 567,
808

— The second step: The numbers are sorted according to the digit

at the tens place

« Consequently, the new order is: 808, 911, 123, 924, 345, 654, 555,

567,472
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Example...

— Based on the new order: 808, 911, 123, 924, 345, 654, 555, 567,

472

— The third step is: The numbers are sorted according to the digit
at the hundreds place

o Finally, the ordered sequence is: 123, 345, 555, 567, 654, 808, 911,

924

Number
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Radix Sort..

« The code for radix sort is straightforward
— It assumes that each element in the n-element array A has d
digits
« Digit 1 is the lowest-order digit and digit d is the highest-order
digit
. RADIX-SORT(A, d)

1 fori =1tod
2 use a stable sort to sort array A on digit i

 Given n d-digit numbers in which each digit can take on up
to k possible values

— RADIX-SORT correctly sorts these numbers in O(d(n + k))

o Since the sorting function (counting sort) takes O(n + k) time

— When d is constant and k = O(n), we can make radix sort run
in linear time ©(n)
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Bucket Sort.

« Bucket sort assumes that the input is drawn from a uniform
distribution

— It divides the interval [0,1) into n equal-sized subintervals, or
buckets

— To produce the output, we simply sort the numbers in each
bucket and then go through the buckets in order, listing the

elements in each A B
1 [.78 0|/
2 .17 1| —{.12| /—.17|/
3 (.39 2 | —=>1.21| —+—>{.23| —+—>1{.26| ./
4 1.26 3|1 1—>.39|/
5 .72 4 |/
6 .94 51/
7 .21 6 | +—>1{.68|/
8 .12 71 +—=>1.72| +—.78|/
9 (.23 8 |/
10 |.68 9| —T—>.94| 15




Bucket Sort..

« The code for bucket sort assumes that the input is an n-
element array A and that each element A[i] in the array

satisfies 0 < Ali] < 1

— It requires an auxiliary array B[O, ...,

(buckets)

BUCKET-SORT(A)

let B[O..n — 1] be a new array
n = A.length
fori =0ton —1
make B[i]| an empty list
fori = 1ton
insert A[i] into list B[|nA[i]]]
fori =0ton —1

sort list B[i] with|insertion sort

O OO0 1 ON Ui & W —

concatenate the lists B[0], B[1], .

n — 1] of linked lists

B[n — 1] together in order
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Analyses.

« The running time of bucket sort is

n—-1
T(n) =00 + » 0(nd)
=0

BUCKET-SORT(A)

let B[0..n — 1] be a new array
n = A.length
fori =0ton —1 - lem
make B[i] an empty list
fori = 1ton
insert A[i] into list B[|nA[i]]] ™ —
fori =0ton —1 zo(nl?)
sort list B[i] with insertion sort
concatenate the lists B[0], B[1],..., B[n — 1] together in order

O 0 1 ON DN B W -
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Analyses..

For analyzing the average-case running time of bucket sort,
we take the expectation over the input distribution

n-1
T(n) =60 + » 0(nd)
=0

[ n-1 | n-1 ]
E[T(n)] = E |0(n) + Z om?)| = E[e(n)] + E Z o(n?)
I =0 _i=0 ]

n—1 _ n-1
=0(n) + Z E[o(n))] = 0@ + z O[Emd)]
i=0 i=0

— Next, we define indicator random variables X;;
X;; = I{A[j] falls in bucket i}



Analyses...

- To compute E[n ] we expand the square and regroup terms

n n n A B
21 _ . 1178 0|/
E[ni] =E ZXU =E Z ZXinik 2 |17 1| 4=l F=[17[7]
j=1 j=1k=1 3 1.39 2 | =21 F—={23] +={26] ]
n - 4 |26 3|
5 (.72 4|/
=E ZX +Z Z Xl]Xlk 6 (.94 51/
] 1 = 1k 1&]¢k 7 |21 6 | 1>168]/]
8 [.12 7| +—=>{72] F—={78] ]
9 .23 8 |/
ZE[X ]+z z E[X; i Xik] NN
j=1k=1&j+#k
1
— It should be noted that P(Xl-j = 1) = —
n
1 1
E[X/] =12 x==—
n n

+ X;; and X, are independent
° .l E[Xl]Xlk] = E[XU]E ik

1 1\ 1
E[X;;Xi| = E|Xi;]E[Xy] = | 1 % n) X (1 X —) =— 19



Analyses....

— Thus, we obtain
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Finally, we conclude that the average-case running time for
bucket sort is linear!

n-1
T(n) =00 + » 0(nd)
=0
n-1

E[T(n)] = 0(n) + z O[E(niz)] =0n)+nx0 (2 — %) = 0(n)

: 20
1=0



Conclusions.

We can categorize that

— Comparison Sorts

« The sorted order they determine is based only on comparisons
between the input elements

» Insertion Sort, Merge Sort, Quick Sort

— Non-comparison Sorts
 Counting Sort, Radix Sort, Bucket Sort

Worst-case Average-case/expected
Algorithm running time running time
Insertion sort O(n?) O(n?)
Merge sort ®O(nlgn) O(nlgn)
Heapsort O(nlgn) —
Quicksort O(n?) O(nlgn) (expected)
Counting sort Ok + n) Ok +n)
Radix sort Od(n + k)) Od(n + k))
Bucket sort O(n?) ®(n) (average-case)




Conclusions..

. https://en.wikipedia.org/wiki/Best, worst and average case

Worst-case Average-case/expected | Best-case
Algorithm running time running time running time
Insertion sort ®(n?) O(n?) O(n)
Merge sort O(nlgn) O(nlgn) O(nlog, n)
Heapsort O(nlgn) O(nlgn) 0(n)
Quicksort ®(n?) ®(nlgn) (expected) | O(nlog,n)
Counting sort Ok + n) Ok +n) O(k +n)
Radix sort O(dn + k)) O(d(n + k)) O(d(k + n))
Bucket sort ®(n?) ®(n) (average-case) | 0O(n)
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https://en.wikipedia.org/wiki/Best,_worst_and_average_case

Conclusions...

o Stable & Unstable sorting algorithm

— A sorting algorithm is said to be stable if two elements with
equal keys appear in the same order in the sorted output as they
appear in the unsorted input

— Stable Sorts

- Insertion sort, merge sort, counting sort, radix sort, bucket sort

— Unstable Sorts

« Heap sort, quick sort

23



Questions?

kychen@mail.ntust.edu.tw
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