Non-comparison Sorts

Kuan-Yu Chen ([t % %)

2019/04/10 @ TR-310-1, NTUST

Review

 Quick sort is a widely used sorting algorithm developed by C.
A.R. Hoare

— Quick sort is also known as partition exchange sort
9 4 1 6 7 3 8 2 S

4 1 3 2 5 9 8 6 7

QUICKSORT (4, p,) PARTITION(A, p, 1)

1 ifp<r I = Alr]

2 g = PARTITION(A, p,r) 2 i=p-l

3 QUICKSORT(4, p,q — 1) Z for ’-fj[’-’]tir -

4 QUICKSORT(A,q + 1,r) 5 l ,'Jz_ix+1
6 exchange A[i] with A[]]
7 exchange A[i + 1] with A[r]
8 returni + 1

« The running time of the partition function
— Worst-case partition: T(n) = 0(n?)
— Best-case partition: T(n) = @(nlog, n)
— RANDOMIZED-PARTITION is O(n log, n)

Counting Sort.

« Counting sort assumes that each of the n input elements is
an integer in the range 0 to k

— It first determines the number of elements less than a given
element x

— The information is used to place element x directly into its
position in the output array

« In the code for counting sort
— The input is an array A[1 ...n]
e A.length =n
— The array B[1 ...n] holds the sorted output
— The array C[O0 ... k] provides temporary working storage

Example.

 Please sort a given array by using counting sort

1 2 3 4 5 6 7 38
A25302303+

— Stepl: Counting the frequencies
O 1 2 3 4 5

cl2]0]2]3]0]1]

— Step2: Determining the number of elements less than x
0 1 2 3 4

5
cl2|2|4]7|7|8]|

— Step3: Putting each element at its own correct position

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

al2]5]3]o[2]3]0[@®] B 3
0 1 2 3 4 5 0 1 2 3 4 5
C224778|+ cl2|2|4|6]7]8

Example..

— Step3: Putting each element at its own correct position
1 2 3 4 5 6 7 8 4 5 6 7 8

1 2 3
al2]s]3]o]2]3[@]3] » [o [5 [T

Example...

— Step3: Putting each element at its own correct position

1 2 3 4 5 6 7 8 I 2 3 4 5 6
JNBEEN
1 2 3 4

Example....

— Step3: Putting each element at its own correct position
1 2 3 4 5 6 7 8
Al2(5]3|10(2|3(0]3 '
0O 1 2 3 4 5
Clo|23[4]7]|8

1 2 3 4 5 6 7 8

Counting Sort..

COUNTING-SORT(A, B, k)

01N N K Wi —

[—
O \O

11

[—
o

let C[0..k] be anew array
fori = 0tok

Cl

i1=0

for j = 1to A.length Counting the frequencies

Cl

/ Cli]

Aljl] = ClA[j]] + 1
now contains the number of elements equal to 7.

fori = 1tok Determining the number

Cl

// Cli]

for j = A.length downto 1

j] — C[i] + C[i — 1] of elements less than x
now contains the number of elements less than or equal to 7.

Putting each element at

B[C[A[j]]] = Al]] its own correct position
ClA[j]] = C[A[j]] -1

Analyses

« The overall time for counting sort is @(n + k)

— In practice, we usually use counting sort when we have k =
O(n), in which case the running time is O(n)

COUNTING-SORT(A, B, k)

1 let C[O..k] be anew array

2 fori =_'0t0k (k)

3 Cli] =0

4 for j - 1 .tO A.Zength. Counting the frequencies, ©(n)

5 ClA[j]l = ClA[j]1 +1

6 // C[i] now contains the number of elements equal to 7.

7 fori = 1tok Determining the number of

8 Cli] = C[i]+ C[i — 1] elements less than x, ©(k)

9 // C[i] now contains the number of elements less than or equal to 7.
10 for j = A.length downto 1

_ _ Putting each element at its
B[C[A[j]]] = A[j] own correct position, O(n)
12 ClA[j]] = C[A[j]] -1

[E—
[E—

Radix Sort.

e Radix sort is a linear sorting algorithm for integers and uses

the concept of sorting names in alphabetical order

— Radix sort is also known as bucket sort?

329 720 720 329
457 355 329 355
657 436 436 436
839 i 457 e - 839 s 457
436 657 355 657
720 329 457 720
355 839 657 839

Example.

o Sort the given numbers using radix sort

345, 654, 924, 123, 567, 472, 555, 808, 911.

— The first step: The numbers are sorted according to the digit at
ones place

« The new order is 911, 472, 123, 654, 924, 345, 555, 567, 808

Number

1

2

3

4

5

6

7

345

345

654

654

924

924

123

123

567

567

472

472

555

555

808

808

911

911

Example..

— Based on the new order: 911, 472, 123, 654, 924, 345, 555, 567,
808

— The second step: The numbers are sorted according to the digit

at the tens place

« Consequently, the new order is: 808, 911, 123, 924, 345, 654, 555,

567,472

Number

1

911

911

472

472

123

123

654

654

924

924

345

345

555

555

567

567

808

808

Example...

— Based on the new order: 808, 911, 123, 924, 345, 654, 555, 567,

472

— The third step is: The numbers are sorted according to the digit
at the hundreds place

o Finally, the ordered sequence is: 123, 345, 555, 567, 654, 808, 911,

924

Number

808

808

911

911

123

123

924

924

345

345

654

654

555

555

567

567

472

Radix Sort..

« The code for radix sort is straightforward
— It assumes that each element in the n-element array A has d
digits
« Digit 1 is the lowest-order digit and digit d is the highest-order
digit
. RADIX-SORT(A, d)

1 fori =1tod
2 use a stable sort to sort array A on digit i

 Given n d-digit numbers in which each digit can take on up
to k possible values

— RADIX-SORT correctly sorts these numbers in O(d(n + k))

o Since the sorting function (counting sort) takes O(n + k) time

— When d is constant and k = O(n), we can make radix sort run
in linear time ©(n)

14

Bucket Sort.

« Bucket sort assumes that the input is drawn from a uniform
distribution

— It divides the interval [0,1) into n equal-sized subintervals, or
buckets

— To produce the output, we simply sort the numbers in each
bucket and then go through the buckets in order, listing the

elements in each A B
1 [.78 0|/
2 .17 1| —{.12| /—.17|/
3 (.39 2 | —=>1.21| —+—>{.23| —+—>1{.26| ./
4 1.26 3|1 1—>.39|/
5 .72 4 |/
6 .94 51/
7 .21 6 | +—>1{.68|/
8 .12 71 +—=>1.72| +—.78|/
9 (.23 8 |/
10 |.68 9| —T—>.94| 15

Bucket Sort..

« The code for bucket sort assumes that the input is an n-
element array A and that each element A[i] in the array

satisfies 0 < Ali] < 1

— It requires an auxiliary array B[O, ...,

(buckets)

BUCKET-SORT(A)

let B[O..n — 1] be a new array
n = A.length
fori =0ton —1
make B[i]| an empty list
fori = 1ton
insert A[i] into list B[|nA[i]]]
fori =0ton —1

sort list B[i] with|insertion sort

O OO0 1 ON Ui & W —

concatenate the lists B[0], B[1], .

n — 1] of linked lists

B[n — 1] together in order

16

Analyses.

« The running time of bucket sort is

n—-1
T(n) =00 + » 0(nd)
=0

BUCKET-SORT(A)

let B[0..n — 1] be a new array
n = A.length
fori =0ton —1 - lem
make B[i] an empty list
fori = 1ton
insert A[i] into list B[|nA[i]]] ™ —
fori =0ton —1 zo(nl?)
sort list B[i] with insertion sort
concatenate the lists B[0], B[1],..., B[n — 1] together in order

O 0 1 ON DN B W -

17

Analyses..

For analyzing the average-case running time of bucket sort,
we take the expectation over the input distribution

n-1
T(n) =60 + » 0(nd)
=0

[n-1 | n-1]
E[T(n)] = E |0(n) + Z om?)| = E[e(n)] + E Z o(n?)
I =0 _i=0]

n—1 _ n-1
=0(n) + Z E[o(n))] = 0@ + z O[Emd)]
i=0 i=0

— Next, we define indicator random variables X;;
X;; = I{A[j] falls in bucket i}

Analyses...

- To compute E[n] we expand the square and regroup terms

n n n A B
21 _ . 1178 0|/
E[ni] =E ZXU =E Z ZXinik 2 |17 1| 4=l F=[17[7]
j=1 j=1k=1 3 1.39 2 | =21 F—={23] +={26]]
n - 4 |26 3|
5 (.72 4|/
=E ZX +Z Z Xl]Xlk 6 (.94 51/
] 1 = 1k 1&]¢k 7 |21 6 | 1>168]/]
8 [.12 7| +—=>{72] F—={78]]
9 .23 8 |/
ZE[X]+z z E[X; i Xik] NN
j=1k=1&j+#k
1
— It should be noted that P(Xl-j = 1) = —
n
1 1
E[X/] =12 x==—
n n

+ X;; and X, are independent
° .l E[Xl]Xlk] = E[XU]E ik

1 1\ 1
E[X;;Xi| = E|Xi;]E[Xy] = | 1 % n) X (1 X —) =— 19

Analyses....

— Thus, we obtain

[

rr
=
T
Il
NgE
rr
S
N
+
N
&[]z

ij E[X;;Xi]

~
Il
[UEN
~
Il
[UEN
w
I
H
w

n n n
1 1
a2
] n]] n
Jj=1 j=1k=1&j*k
1 1
=nX—+nxXxn—-1)x—
n n
1
—2-=
n

Finally, we conclude that the average-case running time for
bucket sort is linear!

n-1
T(n) =00 + » 0(nd)
=0
n-1

E[T(n)] = 0(n) + z O[E(niz)] =0n)+nx0 (2 — %) = 0(n)

: 20
1=0

Conclusions.

We can categorize that

— Comparison Sorts

« The sorted order they determine is based only on comparisons
between the input elements

» Insertion Sort, Merge Sort, Quick Sort

— Non-comparison Sorts
 Counting Sort, Radix Sort, Bucket Sort

Worst-case Average-case/expected
Algorithm running time running time
Insertion sort O(n?) O(n?)
Merge sort ®O(nlgn) O(nlgn)
Heapsort O(nlgn) —
Quicksort O(n?) O(nlgn) (expected)
Counting sort Ok + n) Ok +n)
Radix sort Od(n + k)) Od(n + k))
Bucket sort O(n?) ®(n) (average-case)

Conclusions..

. https://en.wikipedia.org/wiki/Best, worst and average case

Worst-case Average-case/expected | Best-case
Algorithm running time running time running time
Insertion sort ®(n?) O(n?) O(n)
Merge sort O(nlgn) O(nlgn) O(nlog, n)
Heapsort O(nlgn) O(nlgn) 0(n)
Quicksort ®(n?) ®(nlgn) (expected) | O(nlog,n)
Counting sort Ok + n) Ok +n) O(k +n)
Radix sort O(dn + k)) O(d(n + k)) O(d(k + n))
Bucket sort ®(n?) ®(n) (average-case) | 0O(n)

22

https://en.wikipedia.org/wiki/Best,_worst_and_average_case

Conclusions...

o Stable & Unstable sorting algorithm

— A sorting algorithm is said to be stable if two elements with
equal keys appear in the same order in the sorted output as they
appear in the unsorted input

— Stable Sorts

- Insertion sort, merge sort, counting sort, radix sort, bucket sort

— Unstable Sorts

« Heap sort, quick sort

23

Questions?

kychen@mail.ntust.edu.tw

24

	Non-comparison Sorts
	Review
	Counting Sort.
	Example.
	Example..
	Example…
	Example….
	Counting Sort..
	Analyses
	Radix Sort.
	Example.
	Example..
	Example…
	Radix Sort..
	Bucket Sort.
	Bucket Sort..
	Analyses.
	Analyses..
	Analyses…
	Analyses….
	Conclusions.
	Conclusions..
	Conclusions…
	Questions?

