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Review
• Quick sort is a widely used sorting algorithm developed by C. 

A. R. Hoare
– Quick sort is also known as partition exchange sort

• The running time of the partition function
– Worst-case partition: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2

– Best-case partition: 𝑇𝑇 𝑛𝑛 = Θ(𝑛𝑛 log2 𝑛𝑛)
– RANDOMIZED-PARTITION is O(𝑛𝑛 log2 𝑛𝑛)
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Counting Sort.
• Counting sort assumes that each of the 𝑛𝑛 input elements is 

an integer in the range 0 to 𝑘𝑘
– It first determines the number of elements less than a given 

element 𝑥𝑥
– The information is used to place element 𝑥𝑥 directly into its 

position in the output array

• In the code for counting sort
– The input is an array 𝐴𝐴 1 …𝑛𝑛

• 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛
– The array 𝐵𝐵 1 …𝑛𝑛 holds the sorted output
– The array 𝐶𝐶 0 … 𝑘𝑘 provides temporary working storage
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Example.
• Please sort a given array  by using counting sort

– Step1: Counting the frequencies

– Step2: Determining the number of elements less than 𝑥𝑥

– Step3: Putting each element at its own correct position
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Example..
– Step3: Putting each element at its own correct position
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Example…
– Step3: Putting each element at its own correct position
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Example….
– Step3: Putting each element at its own correct position
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Counting Sort..

Counting the frequencies

Determining the number 
of elements less than 𝑥𝑥

Putting each element at 
its own correct position
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Analyses
• The overall time for counting sort is Θ(𝑛𝑛 + 𝑘𝑘)

– In practice, we usually use counting sort when we have 𝑘𝑘 =
O(𝑛𝑛), in which case the running time is Θ(𝑛𝑛 )

Counting the frequencies, Θ(𝑛𝑛)

Determining the number of 
elements less than 𝑥𝑥, Θ(𝑘𝑘)

Putting each element at its 
own correct position, Θ(𝑛𝑛)

Θ(𝑘𝑘)
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Radix Sort.
• Radix sort is a linear sorting algorithm for integers and uses 

the concept of sorting names in alphabetical order
– Radix sort is also known as bucket sort?
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Example.
• Sort the given numbers using radix sort

– The first step: The numbers are sorted according to the digit at 
ones place

• The new order is 911, 472, 123, 654, 924, 345, 555, 567, 808
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Example..
– Based on the new order: 911, 472, 123, 654, 924, 345, 555, 567, 

808

– The second step: The numbers are sorted according to the digit 
at the tens place

• Consequently, the new order is: 808, 911, 123, 924, 345, 654, 555, 
567, 472
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Example…
– Based on the new order: 808, 911, 123, 924, 345, 654, 555, 567, 

472

– The third step is: The numbers are sorted according to the digit 
at the hundreds place

• Finally, the ordered sequence is: 123, 345, 555, 567, 654, 808, 911, 
924
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Radix Sort..
• The code for radix sort is straightforward

– It assumes that each element in the 𝑛𝑛-element array 𝐴𝐴 has 𝑑𝑑
digits

• Digit 1 is the lowest-order digit and digit 𝑑𝑑 is the highest-order 
digit

• Given 𝑛𝑛 𝑑𝑑-digit numbers in which each digit can take on up 
to 𝑘𝑘 possible values
– RADIX-SORT correctly sorts these numbers in Θ(𝑑𝑑 𝑛𝑛 + 𝑘𝑘 )

• Since the sorting function (counting sort) takes Θ(𝑛𝑛 + 𝑘𝑘) time

– When 𝑑𝑑 is constant and 𝑘𝑘 = O(𝑛𝑛), we can make radix sort run 
in linear time Θ(𝑛𝑛)
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Bucket Sort.
• Bucket sort assumes that the input is drawn from a uniform 

distribution
– It divides the interval [0,1) into 𝑛𝑛 equal-sized subintervals, or 

buckets
– To produce the output, we simply sort the numbers in each 

bucket and then go through the buckets in order, listing the 
elements in each
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Bucket Sort..
• The code for bucket sort assumes that the input is an 𝑛𝑛-

element array 𝐴𝐴 and that each element 𝐴𝐴 𝑖𝑖 in the array 
satisfies 0 ≤ 𝐴𝐴 𝑖𝑖 < 1
– It requires an auxiliary array 𝐵𝐵[0, … ,𝑛𝑛 − 1] of linked lists 

(buckets)
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Analyses.
• The running time of bucket sort is

Θ(𝑛𝑛)

Θ(𝑛𝑛)

�
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)
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Analyses..
• For analyzing the average-case running time of bucket sort, 

we take the expectation over the input distribution

– Next, we define indicator random variables 𝑋𝑋𝑖𝑖𝑖𝑖

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

E 𝑇𝑇 𝑛𝑛 = E Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2) = E Θ 𝑛𝑛 + E �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

= Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

E O(𝑛𝑛𝑖𝑖2) = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O E(𝑛𝑛𝑖𝑖2)

𝑋𝑋𝑖𝑖𝑖𝑖 = I{𝐴𝐴 𝑗𝑗 falls in bucket 𝑖𝑖}

𝑛𝑛𝑖𝑖 = �
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖
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Analyses…
– To compute E[𝑛𝑛𝑖𝑖2], we expand the square and regroup terms

– It should be noted that 𝑃𝑃 𝑋𝑋𝑖𝑖𝑖𝑖 = 1 = 1
𝑛𝑛

• ∵ 𝑋𝑋𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖 are independent
• ∴ E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 = E 𝑋𝑋𝑖𝑖𝑖𝑖 E 𝑋𝑋𝑖𝑖𝑖𝑖

E 𝑛𝑛𝑖𝑖2 = E �
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖

2

= E �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

= E �
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖2 + �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1&𝑗𝑗≠𝑘𝑘

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

= �
𝑗𝑗=1

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖2 + �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1&𝑗𝑗≠𝑘𝑘

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

E 𝑋𝑋𝑖𝑖𝑖𝑖2 = 12 ×
1
𝑛𝑛 =

1
𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 = E 𝑋𝑋𝑖𝑖𝑖𝑖 E 𝑋𝑋𝑖𝑖𝑖𝑖 = 1 ×
1
𝑛𝑛 × 1 ×

1
𝑛𝑛 =

1
𝑛𝑛2
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Analyses….
– Thus, we obtain

• Finally, we conclude that the average-case running time for 
bucket sort is linear!

E 𝑛𝑛𝑖𝑖2 = �
𝑗𝑗=1

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖2 + �
𝑗𝑗=1

𝑛𝑛
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E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖
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𝑛𝑛
1
𝑛𝑛

+ �
𝑗𝑗=1

𝑛𝑛

�
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𝑛𝑛
1
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= 𝑛𝑛 ×
1
𝑛𝑛 + 𝑛𝑛 × 𝑛𝑛 − 1 ×

1
𝑛𝑛2

= 2 −
1
𝑛𝑛

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

E 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O E(𝑛𝑛𝑖𝑖2) = Θ 𝑛𝑛 + 𝑛𝑛 × O 2 −
1
𝑛𝑛

= Θ 𝑛𝑛
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Conclusions.
• We can categorize that

– Comparison Sorts
• The sorted order they determine is based only on comparisons 

between the input elements
• Insertion Sort, Merge Sort, Quick Sort

– Non-comparison Sorts
• Counting Sort, Radix Sort, Bucket Sort
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Conclusions..
• https://en.wikipedia.org/wiki/Best,_worst_and_average_case

Best-case 
running time
O(𝑛𝑛)
Θ(𝑛𝑛 log2 𝑛𝑛)
O(𝑛𝑛)
Θ(𝑛𝑛 log2 𝑛𝑛)
Θ(𝑘𝑘 + 𝑛𝑛)
Θ(𝑑𝑑(𝑘𝑘 + 𝑛𝑛))
Θ(𝑛𝑛)

https://en.wikipedia.org/wiki/Best,_worst_and_average_case
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Conclusions…
• Stable & Unstable sorting algorithm

– A sorting algorithm is said to be stable if two elements with 
equal keys appear in the same order in the sorted output as they 
appear in the unsorted input

– Stable Sorts
• Insertion sort, merge sort, counting sort, radix sort, bucket sort

– Unstable Sorts
• Heap sort, quick sort
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Questions?

kychen@mail.ntust.edu.tw
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