
Non-comparison Sorts

Kuan-Yu Chen (陳冠宇)

2019/04/10 @ TR-310-1, NTUST

2

Review
• Quick sort is a widely used sorting algorithm developed by C.

A. R. Hoare
– Quick sort is also known as partition exchange sort

• The running time of the partition function
– Worst-case partition: 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2

– Best-case partition: 𝑇𝑇 𝑛𝑛 = Θ(𝑛𝑛 log2 𝑛𝑛)
– RANDOMIZED-PARTITION is O(𝑛𝑛 log2 𝑛𝑛)

9 4 1 6 7 3 8 2 5

4 1 3 2 5 9 8 6 7

3

Counting Sort.
• Counting sort assumes that each of the 𝑛𝑛 input elements is

an integer in the range 0 to 𝑘𝑘
– It first determines the number of elements less than a given

element 𝑥𝑥
– The information is used to place element 𝑥𝑥 directly into its

position in the output array

• In the code for counting sort
– The input is an array 𝐴𝐴 1 …𝑛𝑛

• 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛
– The array 𝐵𝐵 1 …𝑛𝑛 holds the sorted output
– The array 𝐶𝐶 0 … 𝑘𝑘 provides temporary working storage

4

Example.
• Please sort a given array by using counting sort

– Step1: Counting the frequencies

– Step2: Determining the number of elements less than 𝑥𝑥

– Step3: Putting each element at its own correct position

5

Example..
– Step3: Putting each element at its own correct position

3

2

6

Example…
– Step3: Putting each element at its own correct position

3

2

3 0

0

3

2

3 0

0

0

3

4

3

2

3 0

0

0

3

44 7

5

7

Example….
– Step3: Putting each element at its own correct position

2

2

3 0

0

0

3

44 7

52

8

Counting Sort..

Counting the frequencies

Determining the number
of elements less than 𝑥𝑥

Putting each element at
its own correct position

9

Analyses
• The overall time for counting sort is Θ(𝑛𝑛 + 𝑘𝑘)

– In practice, we usually use counting sort when we have 𝑘𝑘 =
O(𝑛𝑛), in which case the running time is Θ(𝑛𝑛)

Counting the frequencies, Θ(𝑛𝑛)

Determining the number of
elements less than 𝑥𝑥, Θ(𝑘𝑘)

Putting each element at its
own correct position, Θ(𝑛𝑛)

Θ(𝑘𝑘)

10

Radix Sort.
• Radix sort is a linear sorting algorithm for integers and uses

the concept of sorting names in alphabetical order
– Radix sort is also known as bucket sort?

11

Example.
• Sort the given numbers using radix sort

– The first step: The numbers are sorted according to the digit at
ones place

• The new order is 911, 472, 123, 654, 924, 345, 555, 567, 808

12

Example..
– Based on the new order: 911, 472, 123, 654, 924, 345, 555, 567,

808

– The second step: The numbers are sorted according to the digit
at the tens place

• Consequently, the new order is: 808, 911, 123, 924, 345, 654, 555,
567, 472

13

Example…
– Based on the new order: 808, 911, 123, 924, 345, 654, 555, 567,

472

– The third step is: The numbers are sorted according to the digit
at the hundreds place

• Finally, the ordered sequence is: 123, 345, 555, 567, 654, 808, 911,
924

14

Radix Sort..
• The code for radix sort is straightforward

– It assumes that each element in the 𝑛𝑛-element array 𝐴𝐴 has 𝑑𝑑
digits

• Digit 1 is the lowest-order digit and digit 𝑑𝑑 is the highest-order
digit

• Given 𝑛𝑛 𝑑𝑑-digit numbers in which each digit can take on up
to 𝑘𝑘 possible values
– RADIX-SORT correctly sorts these numbers in Θ(𝑑𝑑 𝑛𝑛 + 𝑘𝑘)

• Since the sorting function (counting sort) takes Θ(𝑛𝑛 + 𝑘𝑘) time

– When 𝑑𝑑 is constant and 𝑘𝑘 = O(𝑛𝑛), we can make radix sort run
in linear time Θ(𝑛𝑛)

15

Bucket Sort.
• Bucket sort assumes that the input is drawn from a uniform

distribution
– It divides the interval [0,1) into 𝑛𝑛 equal-sized subintervals, or

buckets
– To produce the output, we simply sort the numbers in each

bucket and then go through the buckets in order, listing the
elements in each

16

Bucket Sort..
• The code for bucket sort assumes that the input is an 𝑛𝑛-

element array 𝐴𝐴 and that each element 𝐴𝐴 𝑖𝑖 in the array
satisfies 0 ≤ 𝐴𝐴 𝑖𝑖 < 1
– It requires an auxiliary array 𝐵𝐵[0, … ,𝑛𝑛 − 1] of linked lists

(buckets)

17

Analyses.
• The running time of bucket sort is

Θ(𝑛𝑛)

Θ(𝑛𝑛)

�
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

18

Analyses..
• For analyzing the average-case running time of bucket sort,

we take the expectation over the input distribution

– Next, we define indicator random variables 𝑋𝑋𝑖𝑖𝑖𝑖

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

E 𝑇𝑇 𝑛𝑛 = E Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2) = E Θ 𝑛𝑛 + E �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

= Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

E O(𝑛𝑛𝑖𝑖2) = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O E(𝑛𝑛𝑖𝑖2)

𝑋𝑋𝑖𝑖𝑖𝑖 = I{𝐴𝐴 𝑗𝑗 falls in bucket 𝑖𝑖}

𝑛𝑛𝑖𝑖 = �
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖

19

Analyses…
– To compute E[𝑛𝑛𝑖𝑖2], we expand the square and regroup terms

– It should be noted that 𝑃𝑃 𝑋𝑋𝑖𝑖𝑖𝑖 = 1 = 1
𝑛𝑛

• ∵ 𝑋𝑋𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖 are independent
• ∴ E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 = E 𝑋𝑋𝑖𝑖𝑖𝑖 E 𝑋𝑋𝑖𝑖𝑖𝑖

E 𝑛𝑛𝑖𝑖2 = E �
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖

2

= E �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

= E �
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖2 + �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1&𝑗𝑗≠𝑘𝑘

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

= �
𝑗𝑗=1

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖2 + �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1&𝑗𝑗≠𝑘𝑘

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

E 𝑋𝑋𝑖𝑖𝑖𝑖2 = 12 ×
1
𝑛𝑛 =

1
𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 = E 𝑋𝑋𝑖𝑖𝑖𝑖 E 𝑋𝑋𝑖𝑖𝑖𝑖 = 1 ×
1
𝑛𝑛 × 1 ×

1
𝑛𝑛 =

1
𝑛𝑛2

20

Analyses….
– Thus, we obtain

• Finally, we conclude that the average-case running time for
bucket sort is linear!

E 𝑛𝑛𝑖𝑖2 = �
𝑗𝑗=1

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖2 + �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1&𝑗𝑗≠𝑘𝑘

𝑛𝑛

E 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

= �
𝑗𝑗=1

𝑛𝑛
1
𝑛𝑛

+ �
𝑗𝑗=1

𝑛𝑛

�
𝑘𝑘=1&𝑗𝑗≠𝑘𝑘

𝑛𝑛
1
𝑛𝑛2

= 𝑛𝑛 ×
1
𝑛𝑛 + 𝑛𝑛 × 𝑛𝑛 − 1 ×

1
𝑛𝑛2

= 2 −
1
𝑛𝑛

𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O(𝑛𝑛𝑖𝑖2)

E 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛 + �
𝑖𝑖=0

𝑛𝑛−1

O E(𝑛𝑛𝑖𝑖2) = Θ 𝑛𝑛 + 𝑛𝑛 × O 2 −
1
𝑛𝑛

= Θ 𝑛𝑛

21

Conclusions.
• We can categorize that

– Comparison Sorts
• The sorted order they determine is based only on comparisons

between the input elements
• Insertion Sort, Merge Sort, Quick Sort

– Non-comparison Sorts
• Counting Sort, Radix Sort, Bucket Sort

22

Conclusions..
• https://en.wikipedia.org/wiki/Best,_worst_and_average_case

Best-case
running time
O(𝑛𝑛)
Θ(𝑛𝑛 log2 𝑛𝑛)
O(𝑛𝑛)
Θ(𝑛𝑛 log2 𝑛𝑛)
Θ(𝑘𝑘 + 𝑛𝑛)
Θ(𝑑𝑑(𝑘𝑘 + 𝑛𝑛))
Θ(𝑛𝑛)

https://en.wikipedia.org/wiki/Best,_worst_and_average_case

23

Conclusions…
• Stable & Unstable sorting algorithm

– A sorting algorithm is said to be stable if two elements with
equal keys appear in the same order in the sorted output as they
appear in the unsorted input

– Stable Sorts
• Insertion sort, merge sort, counting sort, radix sort, bucket sort

– Unstable Sorts
• Heap sort, quick sort

24

Questions?

kychen@mail.ntust.edu.tw

	Non-comparison Sorts
	Review
	Counting Sort.
	Example.
	Example..
	Example…
	Example….
	Counting Sort..
	Analyses
	Radix Sort.
	Example.
	Example..
	Example…
	Radix Sort..
	Bucket Sort.
	Bucket Sort..
	Analyses.
	Analyses..
	Analyses…
	Analyses….
	Conclusions.
	Conclusions..
	Conclusions…
	Questions?

